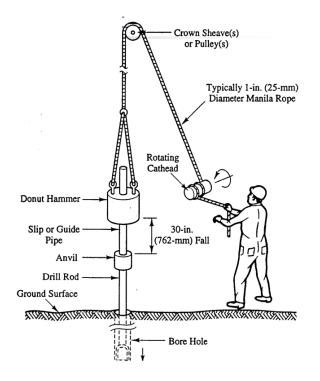
Lab Manual

Standard Penetration Test (SPT) Dynamic Cone Penetration Test (DCPT)


Real Life Projects and Challenges: Standard Penetration Test (SPT)

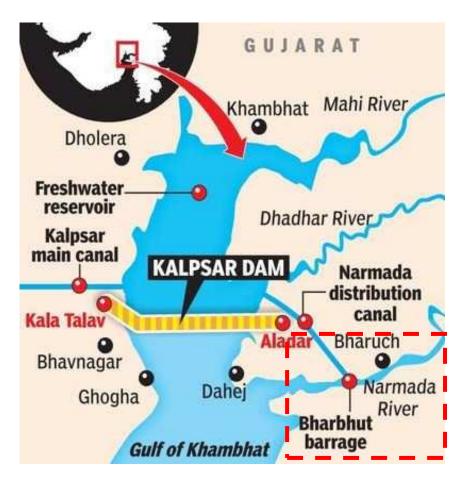
Project Type 1: Construction of a residential building

Depth of borehole: up to 30 m

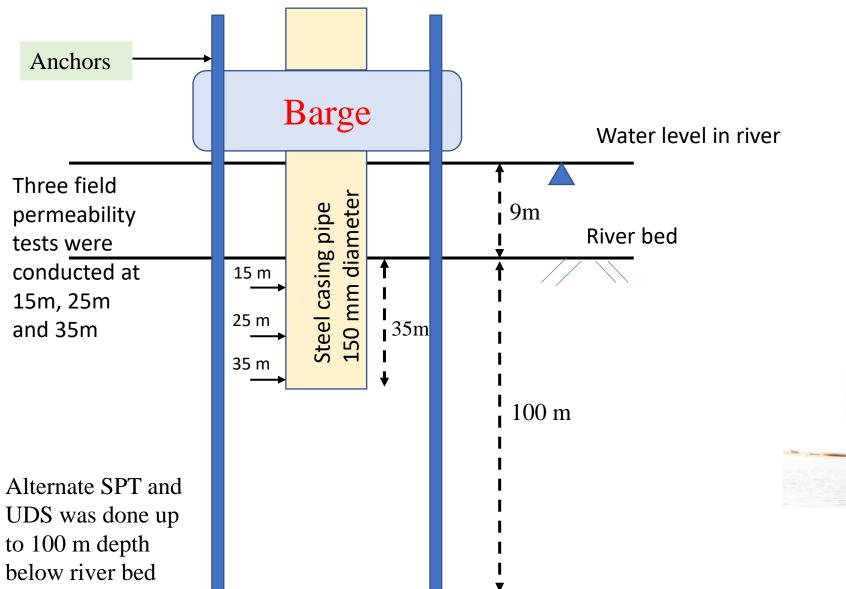
Method of SPT: Using tripod (rope and pulley system)

Limitation: Chances of error due to < 750 mm free fall height of the hammer

SPT using Tripod (Rope and Pulley system)

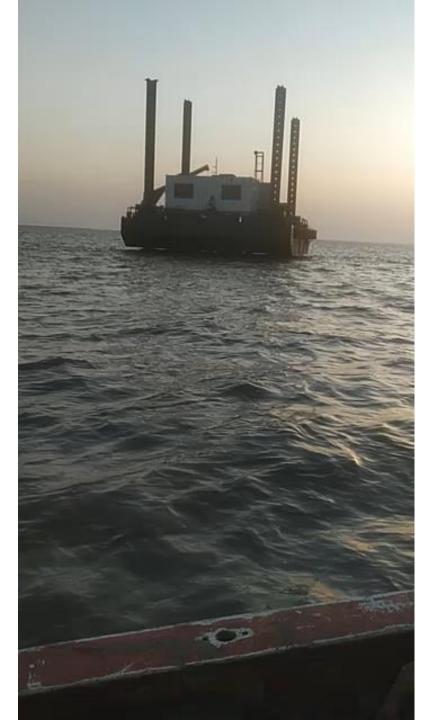


Project Type 2: Construction of Barrage


Major challenge: Underwater SPT

Method of SPT: Both Semi-automatic and fully-automatic SPT

Depth of borehole: 100 m below the river bed


Under water SPT and sample collection

Jack up Barge

Underwater SPT

Fully-Automatic SPT

Project Type 3: Construction of Six-Lane Elevated Corridor

Depth of borehole: 18 m

Salient points:

Rock strata found below 3m Rock cores were collected using rock cutting bits

Rock core bit

Rock coring

Collected rock cores (Arranged depth wise)

Project Type 4: Restoration of Canal Lining

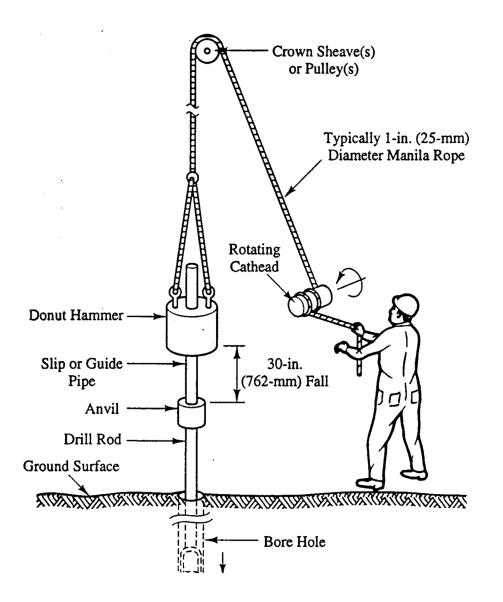
Depth of borehole: 25m

Method of SPT: Semi-automatic SPT

Special feature: Requirement of borehole stabilization

https://wrd.maharashtra.gov.in

UDS sample collected



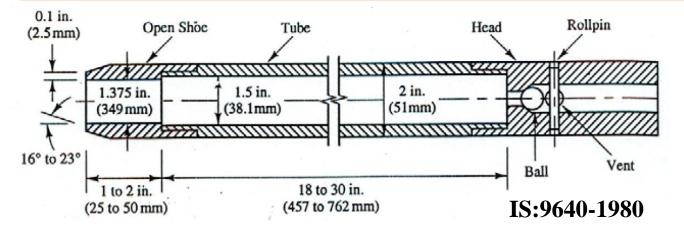
Standard Penetration TEST

IS 2131: 1981 (Reaffirmed 2002)

Standard Penetration Test

Components

- Drilling Equipment
 - Inner diameter of hole \rightarrow 100 to 150 mm
 - Casing may be used in case of soft/non-cohesive soils
- Split spoon sampler \rightarrow IS:9640-1980
- Drive weight assembly
 - Falling Weight = **63.5 Kg**
 - Fall height = **75 cm**
- Others \rightarrow Lifting bail, Tongs, ropes, screw jack, etc.


Drilling Equipment

- Inner diameter of hole \rightarrow 100 to 150 mm
- Casing may be used in case of soft/non-cohesive soils

Standard Split Spoon-Sampler

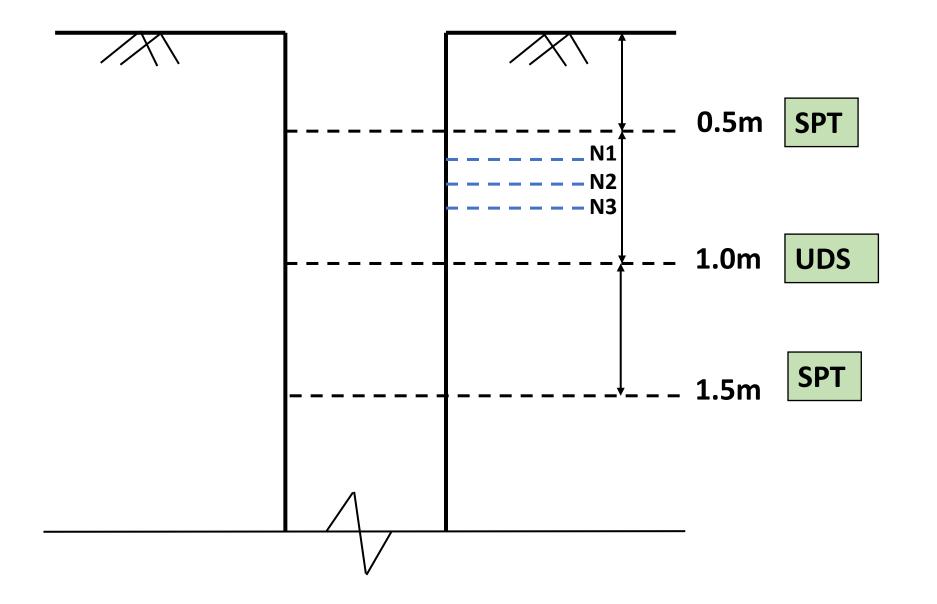
Thick wall (0.25in) cylinder Sampling tube (dia 51 mm) is split along the length Representative Disturbed soil samples

Shelby Tube- Sampler

- Thin wall (1/16in = 0.0625 in) sampling tube
- Sampler pushed into the ground hydraulically
- Sample extruded from tube and "Undisturbed" soil sample is obtained

Procedure

- The bore hole is advanced to desired depth and bottom is cleaned
- Split spoon sampler is attached to a drill rod and rested on bore hole bottom
- Driving mass is dropped onto the drill rod repeatedly and the sampler is driven into soil for a distance of 450 mm. The number of blow for each 150 mm penetration are recorded
- N-value
 - First 150 mm penetration is considered as seating penetration
 - The number of blows for the last two 150 mm penetration are added together and reported as N-value for the depth of bore hole
- The split spoon sampler is recovered, and sample is collected from split barrel so as to preserve moisture content and sent to the laboratory for further analysis
- SPT is repeated at every 750 mm or 1500 mm interval for larger depths


Exploration extent and Refusal stage

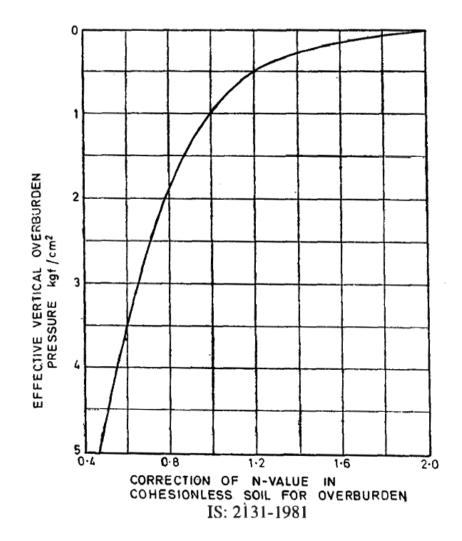
- Exploration extent depends on:
 - Type of structure Intensity of loading
 - Cost of project
 - Variability of strata
 - Zone of influence
 - Bearing capacity
 - Settlement
- Under the following conditions the penetration is referred to as Refusal/Rebound and test is halted
 - a) 50 blows are required for any 150 mm penetration
 - b) 100 blows are required for last 300 mm penetration
 - c) 10 successive blows produce no advancement

Precautions

- The ht. of free fall Must be 750 mm
- The fall of hammer must be free, frictionless and vertical
- Cutting shoe of the sampler must be free from wear & tear
- The bottom of the bore hole must be cleaned to collect **undisturbed** sample
- When SPT is done in a sandy soil below water table , the water level in the bore hole MUST be maintained higher than the ground water level.
 Otherwise: QUICK condition!!
 Very Low N value

Standard Penetration Test (SPT)

SPT Corrections

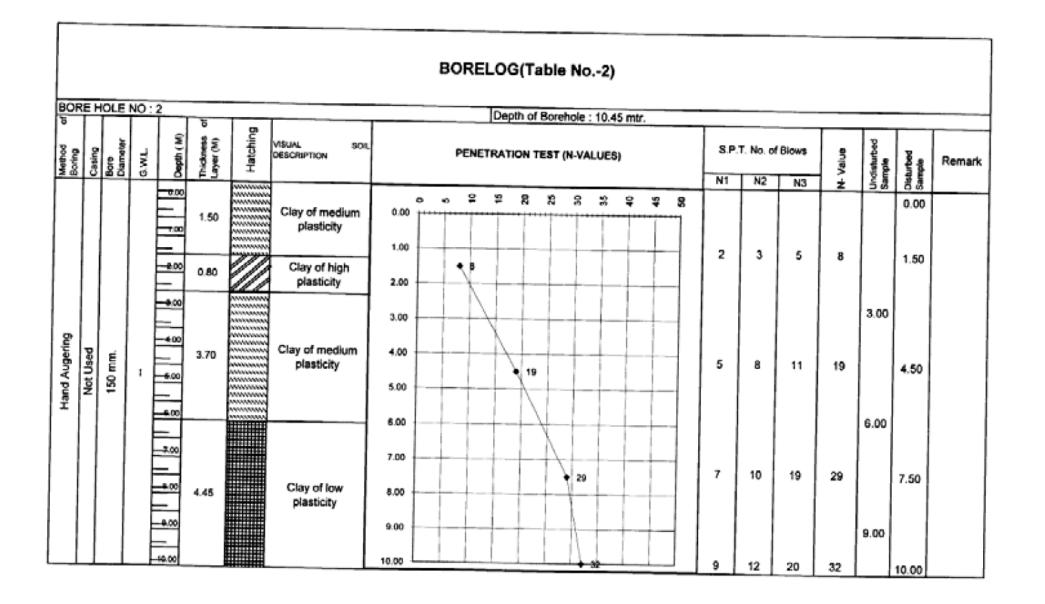

> Overburden correction

>Dilatancy correction

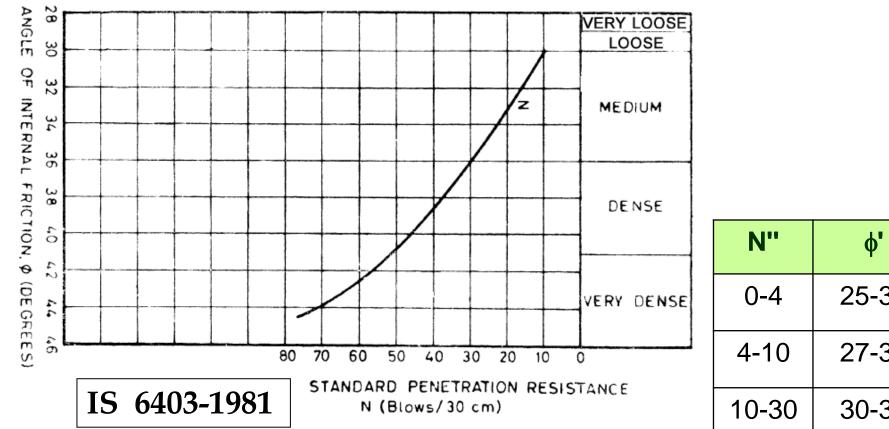
Correction for Overburden Pressure

 $N' = C_N N$

- N' = Corrected value of observed N
- *C_N* = Correction factor for overburden pressure



Correction for Dilatancy


If the stratum consists of fine sand and silt below water table, for N' > 15, the dilatancy correction is applied as

$$N'' = 15 + 0.5 (N' - 15)$$
 (when $N' > 15$)
If $N' \le 15, N'' = N'$ IS: 2131-1981

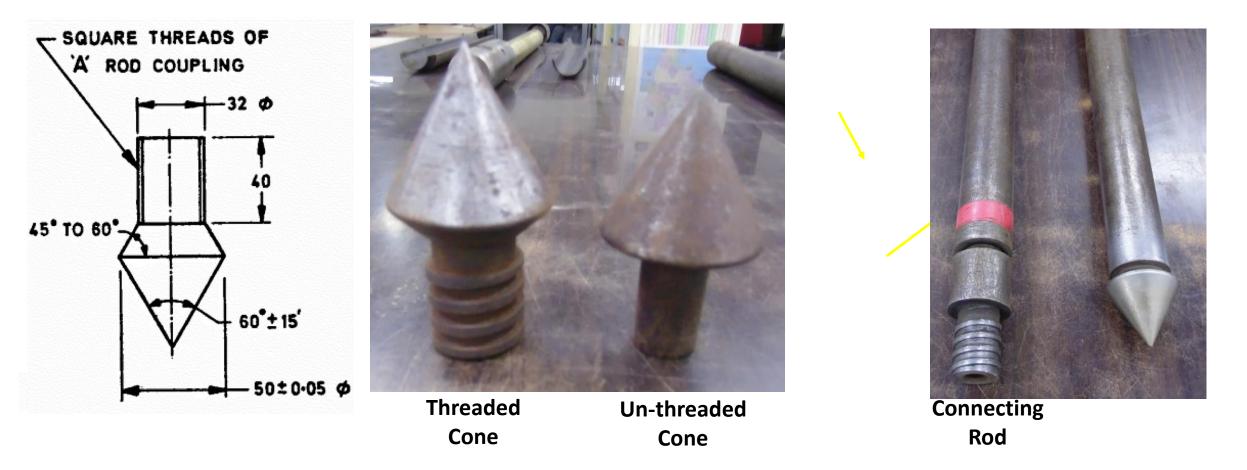
SPT Test data

Interpretations from SPT

N''	φ'	D _r (%)	consistency
0-4	25-30	0-15	very loose
4-10	27-32	15-35	loose
10-30	30-35	35-65	medium
30-50	35-40	65-85	dense
>50	38-43	85-100	very dense

Interpretations from SPT-Cohesive soil

not corrected for overburden			den	$c_u = 6.25.N$ in kPa	
	N	c _u (kPa)	consistency	visual identification	
	0-2	0 - 12	very soft	Thumb can penetrate > 25 mm	
	2-4	12-25	soft	Thumb can penetrate 25 mm	
	4-8	25-50	medium	Thumb penetrates with moderate effort	
	8-15	50-100	stiff	Thumb will indent 8 mm	
	15-30	100-200	very stiff	Can indent with thumb nail; not thumb	
	>30	>200	hard	Cannot indent even with thumb nail	


Dynamic Cone Penetration TEST

IS 4968: 1981

Components

Cone (dia = 50 mm)

Driving rods/drill rods marked at every 100 mm

Procedure

- Cone drill rod driving head assembly is installed vertically on the ground and hammer is dropped from standard height repeatedly
- The blow counts are recorded for every 100 mm penetration. A sum of three consecutive values i.e. 300 mm is noted as the dynamic cone resistance, N_{cd} at that depth.
- The cone is driven up to refusal or the project specified depth.
- In the end, the drill rod is withdrawn. The cone is left in the ground if unthreaded or recovered if threaded.
 - > No sample recovered
 - Fast testing less project cost / cover large area in due time
 - Use of bentonite slurry is optional, which is used to reduce friction on the driving rods.
 - Modified cone is used in this case: diameter = 62.5 mm

DCPT Test data

DCPT – SPT Correlations for 50 mm dia. cone

N _{cd} = 1.5 N	For depth < 3 m
N _{cd} = 1.75 N	For depth 3 m to 6 m
N _{cd} = 2.0 N	For depth > 6 m

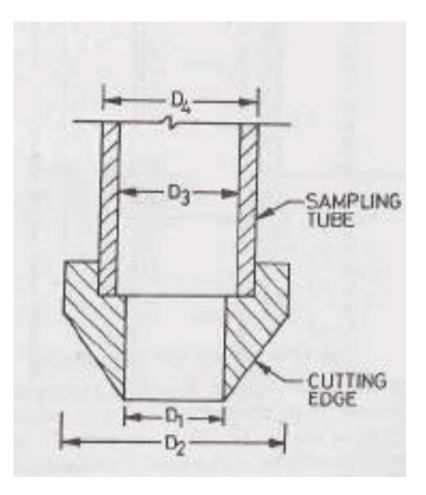
DCPT – SPT Correlations for 62.5 mm dia. cone

Without bentonite	N _{cbr} = 1.5 N	For depth < 4 m
slurry	N _{cbr} = 1.75 N	For depth 4 m to 9 m
	$N_{cbr} = 2.0 N$	For depth > 9 m
With circulating bentonite slurry	$N_{cbr} = N$	For all depths

Soil Sampling

- Disturbed Samples: Natural soil structure is modified or destroyed during sampling
 - Representative Samples:
 - Natural water content and mineral constituents of particular soil layer are preserved
 - Good for soil identification and water content
 - Non-representative Samples:
 - Water content altered and soil layers mixed up
 - Of no use.
- Undisturbed Samples: Soil structure and the other mineral properties are preserved to an extent.
 - Some disturbance is always there, e.g. due to stress release. However it should be minimized in order to have suitable sample for our analysis.

Sample disturbance criteria:


• Area ratio:

 $A_r = \frac{Maximum\ cross - sectional\ Area\ of\ cutting\ egde}{Area\ of\ the\ soil\ sample} \,*\,100$

$$A_r = \frac{D_2^2 - D_1^2}{D_1^2} * 100$$

For good quality undisturbed sample Area Ratio must be:

- <10 Soft sensitive clays
- <20 Stiff formations

